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A qualitative investigation of a nonlinear differential equation of 
the second order is carried out, This equation, in particular. 
describes the motion of a particle along a closed curve subject to a 

p~~~i~g force. Under certain additional co~~~t~~os the presence of L 

pushing force assures the existence of at least one stable limit cycle. 

A simple illustrative example is a pendulum, subject to the action 
of a pushing force, 

Consider the equation for the oscillations of a p~~l~ 

0’ + a@ + & sin 8 = L + &I4 

8 = 1 for 8’ > 0, 6=-I for a*,<0 
(1) 

where S = 1 for 8 > 0, 6 = - 1 for 8 < 0 and Q, b, L, M are positive con- 

stants such that 

holds. 

The constant L in equation (1) corresponds to the presence of an ex- 

ternal moot, the constant o characterizes the ma~it~de of the resist- 

ence of tbe medium and M is determined by the presence of a force pushing 

the pendulum in the direction of its motion. 

bet 8, be the smallest positive angle satisfying the condition sin 8, = 

(L + Ml/b. E3y the substitution x = 8 - 19~ equation (1) is reduced to the 

form 

where 
x--+ax~+-t-f(x)=o 

f (2) = b [sin (57 + 0,) - sin fl,] for x’ > 0 
1 (x) = b [sin (x + 0,) -sinf&1+2M for i<O 

(2) 
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In the article under consideration oscillations determined by the 
equation 

5” + R (x, x’) + f (3T) = 0 0) 
are investigated, where 

f (2~) = f1 (c) for 2’ > 0, f(2) =fz(X) for I r’\<fl 

~nditions are imposed on the functions R(x, xl, flk) and f2 (xj, such 
that equation (3) becomes a generalization of equation (2). 

Differential equation (3) is equivalent to the system of equations 

5” = y, y” =-R(G Y)--f(4 (4) 

l&e captions f (~3 and ~,(xI are assumed to be continuous for all X, 
each continuously a ifferentiable in the neighborhoods of its zeros. In 
order to avoid critical cases, it is assumed that the derivatives of the 
functions f,k) and fZk) d o not vanish for the zeros of the functions 
themselves. 

In addition, let the fictions f,(r) and fz (xl, for all x, satisfy the 
conditions 

Here x2 and n2 denote the roots of the function fl(n) nearest to 
x = 0, while qr and q2 are the roots of the function f2(~) nearest to 
X= qo, ~f~(zf > 0 in a ~eig~~hood of x = 0, fx - q0 If, fn) > 0 in a 
neighborhood of x = qO, and 

?,n: 

In the present article we sha: consider only one ease of the mutual 
disposition of the roots of the functions f,(x) and f,(x), ~~e~y~ we 
shall assume that the inequalities 

22 < qn < Tie < 0 < $1 < *'I1 (8) 

hold. 

~~~io~~~~~ in the case of the example rnen~i~~~d at the beginning of 
the article, the presence of the pushing force of the pendulum assures 
the above mentioned disposition of the roots of the functions f,(x) and 
f2 (~1. Sketches of the graphs of the functions fl (x) and f2 (x1 are given 
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in Fig, 1, Notice that the graphs of these functions can, in general, 

Pig, 1. 

intersect. The integral 

can assume any sign and may also be zero. For further investi$atio~s this 

fact will be of essential importance. 

We shall assume that the function R(x, y) is continuous on the whole 

xy-plane, continuously differentiable in the neighborhoods of the points 

~~~~ 01, (0, O), Cx,, 01, (ql, 01 and such that the conditions 

J3 (r i- 25 Y> = R P, ?,f) 

Rjz, y) increases with y WV 

lim R (x, y) > 0 ss Y -+ 00, R (x, 0) = 0, lim R&y) < 0 as y-+---o0 
are satisfied. 

y4-W 

Equation (33, satisfying the conditions (51 to 181, in general, des- 

cribes the motion of the particle along a certain closed curve, subject 

to the action of a pushing force. 

‘lhe aim of the present paper is a qualitative investigation of system 

14) under the as~~tions (5) to (81, i.e. the considerati~ of the 

possible different dispositions of the integral curves of this system 

and the study of its limit cycles, 

From the assqtions concerning the funqtion f(x) it follows that the 

trajectories of the system (4) for the half-plane y > 0 are determined 

by the system of differential e~ations 

while for the half-plane y < 0 by the system 

z’ = y, y’ =--R@, ~~~~2~~~ P? 

‘Ihe possible d~s~sition of the trajectories of the system Cl11 under 
the assumptions (S), (10) has been investigated fully in an earlier paper 
11 1. If the condition Jz(‘12, ‘1~1 ( 0 is satisfied for system (12) also 



the disposition of its trajectories can easily be established by means of 

Theorem 1 of the same paper [ll. In order to apply the results of the 

above mentioned paper to system (121 for the case J2(q2, ql) > 0, it is 
sufficient to carry out a substitution of variables, by replacing y by 

- y and x by 7. - x. Introduce the notations 

jr (*Q) - 3,) = $' (r), - R (T,& - r"‘? -91 = R1 (x:t Yf 

Then it is easy to see that equation 

cl11 - III (z, 2,) A- F f:i:j -2 =; --__I_---__ 
dzc Y 

which is equivalent to the system of equations (121, satisfies the 

assumptions of Theorem 1 of article [l 1, i.e. the results established 

in that theorem can be applied anew. 

In order to investigate the disposition of the trajectories of system 

(4) an the whole plane, it is sufficient to *paste together" along the 

x-axis the trajectories of system (111 for the ba~f-~~~~e y > 0 and the 

~o~~espon(lin~ trajectories of system (121 for the half-plane y < 0. Let 

us elaborate on this in detail. 

'Ike phase trajectories of system (4) are determined by the different- 

ial equation 

&J R [Z, y) -".i (5) -=- 
dX Y 

(V 

where the functions 8(x, y3 and f(x> satisfy conditions (51 to (71, 

We shall consider the phase space of system (4) as being developed on 

the xy-plane Cl]. Because of the periodicity with respect to x of fl(r)l 

f,(r) and R(x, y), the disposition of the integral curves in the xy-plane 
will be the same in all strips of width 2nand parallel to the y-axis. 

Therefore, it is sufficient to investigate the disposition of the in- 

tegral curves of equation (121, for example, in the strip 

Of essential significance for the disposition of the integral curves 

of system (4) are the singular points of systems (11) and (121, the co- 

ordinates of which are found from the equations f,(x) = 0, f2(zl = 0, 

Y = 0. fn order that the motions of system (4) have an oscillating 
character, assume that the following conditions are satisfied: 

The singular points of systems (11) and (121 decompose the interval 

tn z I qll into several segments, of which the three se~~ts Lx,, ~~1, 
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ho, 0 1 and b,, q,l consist in their entirety of unstable points 
2). These segments will be called unstable segments of system (4). 

(Fig. 

We shall study the disposition of the separatrices of system (4) , and 
also of the several needed integral curves of this system by means of the 
isoclinics of equation (13). I soclinics of inclination zero are the 
curves determined by the equations 

II (2) $ R (z, y) = 0 for Y > 0, f2(x) + R(z, y) = 0 for z/GO 

Due to the assumptions mentioned below regarding the functions fl(n), 
f (x) and Rfx, y), these equations uniquely determine the dependence of 
t i e ordinates of the points of the isoclinic as functions of their 
abscissas 

y = Q1 (X) for Y > 0, y = (D2 (a) for Y \< 0. (14) 

Moreover, as it is easy to establish, the zeros and the intervals in 
which the functions @ (x) and QZ(x) have a constant sign coincide with 
the zeros and intervals in which the functions f (xl and f (z) respect- 
ively, have a constant sign. The isoclinics of z&o inclin2atiorl (14), 

Fig. 2. Fig. 

together with the isoclinic of vertical inclination y = 
curves,decompose the xy-plane into regions in which the 

3. 

0 of the integral 
derivative of the 

integral curves of system (4) has constant sign, ‘lberefore, the direction 
field of the system can be easily constructed (Fig. 2). 

(5) 
The study of the direction field of system (4), satisfying assqtions 

to (lo), and of the nature of the singular points of systems (11) and 
(12), shows us that the presence of unstable segments of system (4), 
in comparison with the previously considered case [ 1 I, creates a larger 
number of possible qualitative pictures for the disposition of the in- 
tegral curves of system (4). In particular, the presence of the unstable 
segment [q,, 0 1 may imply the existence of a stable limit cycle, embrac- 
ing this segment and corresponding to the periodic solution X(t) of 
equation (3). 



ff the conditions (5) and (8) are also satisfied, it is possible that 
system (4) possesses periodic solutions Y,(x) snd Y,(r), corresponding 
to the limit cycles embracing the cylinder of the phase surface of the 
system and satisfying for all x the conditions 

Yi (X -+ aTq = Yi (ST) (i = 1, 2) for all x 
2x 
* 

\ 

(15) 
[fi fq $- .R (5, Yi (z>)] dz = 0, p, (X) > 0, 

(3 
T?f+O 

‘Ihe functions YI (x1 and Y bc) can vanish only at the points which corres- 
pond to the abscissa of t e unstable singular points of systems Ill) and 1: 
U21, respectively, 

Let us denote the separatrices of system (41, and also some of their 
continuations, by means of integral curves as in Fig. 3. For the con- 
v~~ie~ce of the exposition the latter will also be called separatrices 
of system (41. 

The varieties of the qualitative picture for the disposition of the 
integral curves of the system under consideration are determined by the 
various combinations of the existence and nonexistence of the periodic 
solutions X(t), Yl(n), Y2(x) af equations (3) and (131, respectively, as 
well as by the various possible mutual dispositions of the separatrices 

S1’ “2’ rt, ‘*t ‘0’ so* 

callous to Theorem I of article I 1 ] , a theorem can be formulated 
and proved to the effect that system I4f under the ass~tions (5) to 
(?I possesses five and only five possible varieties for the qualitative 
picture of the disposition of the integral curves. 

The necessary and sufficient conditions for the existence and non- 
existence of periodic solutions with respect to x are given in Theorem 1 
of the previously mentioned paper [ 1 1 . So the fulfillment of the in- 
equality 

%@I > 49 WI 

is a necessary and s~ffiGi~nt condition for the ~unexistence of the solu- 
tion Y,(xl. On the other band, for the existence of this solution it is 
necessary and sufficient that the inequality 

be satisfied. 

Analogous conditions can be given also for the periodic solution Y,(X) 
of equation ( 13). So, the fulfillment of inequality 
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is a necessary and sufficient condition fur its nonexistence, while for 

the existence of Yz(x) it is necessary and sufficient that the inequality 

1”l (rid G F2 ho) (19) 

be satisfied. 

Criteria for the existence or nonexistence of periodic solutions with 

respect to x. can be obtained by means of inequalities (6) to (191, using 

estimates for separatrices contained in these inequalities. 

In order to derive conditions for the existence of a periodic solution 

A’(t) with respect to t of equation (31, it is necessary to consider the 

mutual disposition of the-separatrices rO, r2, .sl’ so. The disposition of 
the separatrices will be given by the comparison of the segments cut off 

by them either on the y-axis or on the x-axis. Denote by x(sO) the length 

of the segment from the origin of the coordinates along the x-axis to the 

largest positive root of the function sgfx), by r(rg) the length of the 
segment along the x-axis from the origin of coordinates to the smallest 

negative root of the function rO(x), and by x(rl) and x(sl 1 the lengths 

of the analogous segments, The points x(r,,l, x(rl), x(s~) and x(sO 1 are 

assumed to lie on the segment [ q2, xi1 . 

beg 1. Let the bounded region 11 contain in its interior an unstable 
silent [no, 0 ] of system (4) and let it be situated in the strip z2 c 

x ( ‘II* 

If there is a point on the boundary of the region D such that the 

positive half-trajectory issuing from this point lies in the region D and 

does not coincide with the separatrices s and r2, then there exists at 

least one stable limit cycle of system (4 f embracing the segment lqo, 0 1, 

l-lere and in what follows a limit cycle is called stable if it is 

stable in the sense of Liapunov. 

Let us prove the Lemna. If a point, moving along a trajectory of system 
(41, remains as t + + by in the bounded region, then it must have a set of 
0 limit points, not intersecting the unstable segment [‘lo, 0 ] of this; 
sys tern. Since the set of o limit points consists of complete trajectories 
of the system, then it must contain the liniit cycle t 2 1 I necessarily 
enraging the unstable se~ent [n,, 0 1 , 

The limit cycle cannot lie in the upper half-plane. In fact, consider 
the function 

21 (5, y) = y” -j- 2 ’ /I (x) c?.r, I 
0 

Gxnputing the derivative with respect to time, we have,dae to 
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equations (4) 

From this we conclude that the function tt decreases along the limit 

cycle as t increases. This, however, contradicts the single-valuedness 

of function V. 

If we assume that the limit cycle lies in the lower half-clue, then 

we arrive at an analogous contradiction by considering the function 

vC% $1 = Y2 -t- 2s f2(Wx for yb0 

On the other hand, the limit cy",ie carat lie either to the left of 

the point x = q. nor to the right of the point x = 0, since such a dis- 

position would not be consistent with the direction field of system (4). 

Hence, the limit cycle lies in the region D and embraces the segment 

cq,, 03. 

If the found limit cycle is unstable, then inside it must lie another 

limit cycle, being the set of w-limit points for points which recede from 

the first cycle as t increases, Using the method of transfinite induction, 

we obtain at least one stable limit cycle, lying in the region D and 

embracing the unstable segment IvO, 0 1 of the system. 

Theorem 1. In order that system (4) possess at least one stable 

limit cycle it is sufficient that one of the following conditions be 

satisfied: 

W 0 < +%> < $Crzr (20.1) 

P9 r(s1) < X(fO) -=C To (20.2) 

(4 so(W < d9, '"oh) > r2 ho) (20.3) 

Let the condition f20.1) be satisfied (Fig. 41. 

Consider the region D, bounded by the curves s , rz and the segment 

[r(s,), x(r 
region D. & 

11 of the x-axis, The segment [q,, 0 f is situated inside the 
e trajectory of system (41, coinciding with the separatrix 

so, enters the ~~g~~~ D for some value of t. As t increases this traject- 

ory cannot leave this region due to the structure of the direction field 

and uniqueness of the integral curves of system (4). 

From the fulfillment of the conditions of Lemma 1 follows the exist- 

ence of at least one stable limit cycle of the system. 

In the case of the fulfillment of conditions (20.2) it is necessary 

to take for the region D the region bounded by the separatrices ro, si 



The c0ndit~on.s for the existence af limit cyc2es 1193 

and the segment [x(s,), x(r,)l sf the x-axis, and for the trajectory to 
be investigated to take the trajectory of the system coinciding with the 
separatrix ro. 

Finally, if the conditions ~~~.3~ of the 
theorem are satisfied, one can take for the region 
D the region bounded by the separatrices so, sl, 

and the segments I[r2tq,), ro(qo) 1 g 
~~(0) 1 of the y-axis. 

Fig. 4. 
Inv~sti~ati~g the behavior of the trajectories 

of system (41, coinciding either with the sepa- 
ratrix sQ+ or with the separatrix rO, we can 

easily establish by Lemma 1 the existence of at least one stable limit 
cycle of system (4). 

Let us consider in detail the derivation of sufficient criteria for 
the existence of a limit cycle of system (41, 

~~~~~ 2. Ihe integral curves so and s of the system satisfy the in- 
equal ities 

for all those x for which the corresponding integrals are positive. 

In order to prove the first inequality consider the curve 

y == 12 \‘I1 (2, iiq 
x 

(22) 

This curve intersects the x-axis in addition to the point n - x1, at 

a certain point n =c x 
ducing the ~ot~ti~~ 

*, situated on the segment I x2’ 0 1 . In fact, intro- 

we have by virtue of the properties of the function fi (x1 the inequalities 
@ (0) > 0 and Q) (x,) < 0, i.e, on the segment Lx,, 01 there is a zero of 
the function d, (x1. 

The separatr~x s1 satisfies the d~ffere~~~a~ elation (131, i.e. the 

relation 

S12 (3) = 2 s’ [R ( x, s, (x)) + fl (x)] dr 
X 

(23) 

Consider the difference of the squares between the ordinates of the 
curves s1 and (22): 
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s12 (5) --y’ (x) = 2 i’ R (x, Sl (Lx)) dx 

For s,(n) > 0 this difference is positive by virtue of the properties 

(10) of the function R(s, y). In this way the validity of inequality (21) 

is proved for all X* < x < x1. 

Analogously, .the validity of inequality (22) for all those x can be 

proved, for which the curve 

y = (2 i’ fr (z) f&z)‘/1 
(24) 

J 

is situated above the x-axis. In exactly the same way also the following 

lerana can be proved. 

Lemma 3. ‘Ihe integral curves r0 and r1 of system (12) satisfy 

equalities 

r2 (2) < - (2 E’ f2 (z) dz)“*, ro (4 > - (25’ fz (4 dz)“l 
5 a! 

for all those x for which the curves 

y = - 2 ‘* fs (2) dx 
( s ) 

‘/z 
X 

y = - 2 X’ fz (x) dx)‘l’ 
( s 

the in- 

(25) 

(26) 

(27) 

respectively are situated below the x-axis. 

Remark. It is easy to verify that for the values of x under consider- 

ation the curves (22’), (24)) (26), (27) are without contact [ 2 I and 

intersect, as t increases, with the trajectories of system (4) along the 

x-axis. In fact, consider the function 

v (2, y) = yz - 2 1’ k (x) dx 

X 

For this function the derivative with respect to time, calculated with 

due regard to equations (41, 

dv’dt = - 2yR (x, y) 

is negative for all y > 0 according to the properties (10) of the function 

R(x, y). 

Noticing that ~(0, 0) < 0, we conclude that the curve (22) is con- 

tactlesg. 

Analogously one can verify the fact that the other curves arealso 

contactless. 
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13reorem 2. If the curves (24) and (261, issuing from the point (q,,O), 
intersect the x-axis correspondingly at the points x = u*, x = v, and 

0 < x* < T1, < ?I’ then the system (4) has at least one stable limit cycle. 

In order to prove this theorem, consider the region D, bounded by the 
curves (24, (26) and the segment Ex*, ?*I of the x-axis. Since the curves 
(24) and (26) are without contact, and are intersected by the trajectories 
of system (4) in the inward direction of the region, as is the segment 

L*, ~r,[, the trajectories of system (41, intersecting the boundary of 
the region D, as t increases, enter the region and remain in it as 

t++@=. The region D so ~onstructed~ embraces the segment is?,, 0 1 of 
unstable points-of the system. Applying Lemma 1 we convince ourselves of 
the existence of at least one stable limit cycle of system (41. 

Theorem 3, If the curves 122) and (27), issuing from the point (x,, 01, 
intersect the x-axis at the points x = x+ and x = “I* in such a way that 
the inequalities x2 < x* c q < qO are satisfied, then the system (4) 
has at least one stable limit cycle, 

The proof of this theorem can be given analogously to the proof of the 
preceding theorem. It is necessary to take for the region D the region 
bounded by the contactless curves (22) and (21) and the segment [z*, v,‘J 
of the x-axis. 

Let us remark that Theorems 2 and 3 can also be proved by means of 
checking correspondingly the conditions ~2~.1~ and (20.2) of Ibearem 1, 

Theorenc 4. If 

2 i’ri (x) dx >, AC, 2 4’ 12 (x) dz > Is2 

where 
0 90 

are the extremal values for the ordinates of the isoclinics of zero in- 
clination (141 in the corresponding intervals of variation of X, then 
the system (4) possesses at most one stable limit cycle. 

In fact, from the properties of isoclinics (14), it follows that 
so (0) < A and rO(nQ 1 > B. On the other hand, the curve (22) is contact- 
less and lies below the separatrix sl$ in any case for O,< x < xi; the 
curve (26) is above the separatrix r2 for n2 < x 4 no. Consequently, we 
have 



in conformity with inequalities (21) of Lemna 2. Comparing the obtained 

inequalities with the conditions of the theorem to be proved, we conclude 

that from the fulfill~~t of the cu~diti~ns of the theorem follows the 

validity of inequalities (cl of Theorem 1, Thus, system 14) has in fact 

at most one limit cycle. 

Applying 'theorem 4 to equation (1) we can assert that for sufficiently 

large (a) this equation has a periodic so ution with respect to t, 

corresponding to the undamped oscillations of a pendulum. 

'Theorem 5. If there exist values 

f% x,1 and I$, qO I, respectively, 

2, 

5 
~~~~~~~~~, 

51, 

x=x *andx=q* on the segments 

such that the inequalities 

are satisfied simultaneously, then system (4) possesses at least one 

stable limit cycle. 

In order to prove the theorem consider the curves 

Then by virtue of the assumptions with respect to the function flk) 

we have F(O) > 0 and F(x*) < 0, i.e. the curve (28) intersects the x-axis 
at a certain point x I= < on the segment [O, n*] as well as at the point 

x=q,* ~alog~usly, it can be established that the curve (29) intersects 

the x-axis at a certain point x = 4 of the segment fq,, q,] as well as 

at the point x = x*, Consider the region bounded by the curves (28) and 

(29) and the segments [q*, 51 and [ccJ, x+1. 

It is easy to show that the curves (281 and (29) are contactless curves, 

intersected by the trajectories of system (4) inside the region D as t 

increases. By virtue of the structure of the direction field of system 

(4) the segments [q,, ('1 and [c, xy 1 are also intersected by the traject- 
ories of the system, entering the region D as t increases, Finally, from 

the conditions of our theorem follows that the unstable segment [Y,J*, 0 1 
is contained inside the region D. 

From the above considerations follows that for the region D the con- 



The conditions for the existence of limit cycles 1197 

ditions of Lennna 1 are satisfied, i.e. the system (4) actually possesses 
one stable limit cycle, if the assunqtions of our theorem are satisfied. 

Corollary. If the inequalities 

are satisfied simultaneously, then system (4) possesses at least one 
stable limit cycle. 

The correctness of the formulated statement follows from Theorem 5 
proved above for x* = x1 and q, = q2. 

Notice, however, that the corollary to Theorem 5 can also be proved 
independently by verifying that the inequalities (20.3) of ‘Theorem 1 are 

satisfied. 

In conclusion let us remark that the estimates for the separatrices, 
given by Lenraa 2, can be improved without great difficulties. The suffi- 
cient conditions for the existence of limit cycles of system (41, form- 
ulated in Theorems 2 to 5, in the s&e way, can be made more precise; 
it is true that this can be achieved only by making them more complicated. 
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